523 research outputs found

    Imposing high-symmetry and tuneable geometry on lanthanide centres with chelating Pt and Pd metalloligands

    Get PDF
    Exploitation of HSAB preferences allows for high-yield, one-pot syntheses of lanthanide complexes chelated by two Pd or Pt metalloligands, [MII(SAc)4]2− (SAc− = thioacetate, M = Pd, Pt). The resulting complexes with 8 oxygen donors surrounding the lanthanides can be isolated in crystallographically tetragonal environments as either [NEt4]+ (space group: P4/mcc) or [PPh4]+ (space group: P4/n) salts. In the case of M = Pt, the complete series of lanthanide complexes has been structurally characterized as the [NEt4]+ salts (except for Ln = Pm), while the [PPh4]+ salts have been structurally characterized for Ln = Gd–Er, Y. For M = Pd, selected lanthanide complexes have been structurally characterized as both salts. The only significant structural difference between salts of the two counter ions is the resulting twist angle connecting tetragonal prismatic and tetragonal anti-prismatic configurations, with the [PPh4]+ salts approaching ideal D4d symmetry very closely (φ = 44.52–44.61°) while the [NEt4]+ salts exhibit intermediate twist angles in the interval φ = 17.28–27.41°, the twist increasing as the complete 4f series is traversed. Static magnetic properties for the latter half of the lanthanide series are found to agree well in the high temperature limit with the expected Curie behavior. Perpendicular and parallel mode EPR spectroscopy on randomly oriented powder samples and single crystals of the Gd complexes with respectively Pd- and Pt-based metalloligands demonstrate the nature of the platinum metal to strongly affect the spectra. Consistent parametrization of all of the EPR spectra reveals the main difference to stem from a large difference in the magnitude of the leading axial term, B02, this being almost four times larger for the Pt-based complexes as compared to the Pd analogues, indicating a direct Pt(5dz2)–Ln interaction and an arguable coordination number of 10 rather than 8. The parametrization of the EPR spectra also confirms that off-diagonal operators are associated with non-zero parameters for the [NEt4]+ salts, while only contributing minimally for the [PPh4]+ salts in which lanthanide coordination approximates D4d point group symmetry closely.LHD acknowledges support from NSF-CCT EMT 08-517. (08-517 - NSF-CCT EMT

    Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models

    Get PDF
    Crack initiation governs high cycle fatigue life and is sensitive to microstructural details. While corresponding microstructure-sensitive models are available, their validation is difficult. We propose a validation framework where a fatigue test is mimicked in a sub-modeling simulation by embedding the measured microstructure into the specimen geometry and adopting an approximation of the experimental boundary conditions. Exemplary, a phenomenological crystal plasticity model was applied to predict deformation in ferritic steel (EN1.4003). Hotspots in commonly used fatigue indicator parameter maps are compared with damage segmented from micrographs. Along with the data, the framework is published for benchmarking future micromechanical fatigue models

    Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models

    Get PDF
    Crack initiation governs high cycle fatigue life and is sensitive to microstructural details. While corresponding microstructure-sensitive models are available, their validation is difficult. We propose a validation framework where a fatigue test is mimicked in a sub-modeling simulation by embedding the measured microstructure into the specimen geometry and adopting an approximation of the experimental boundary conditions. Exemplary, a phenomenological crystal plasticity model was applied to predict deformation in ferritic steel (EN1.4003). Hotspots in commonly used fatigue indicator parameter maps are compared with damage segmented from micrographs. Along with the data, the framework is published for benchmarking future micromechanical fatigue models

    Differential Response of Bacterial Microdiversity to Simulated Global Change

    Get PDF
    ACKNOWLEDGMENTS UC Irvine and the LRGCE are located on the ancestral homelands of the Indigenous Kizh and Acjachemen nations. We thank Alejandra Rodriguez Verdugo, Katrine Whiteson, Kendra Walters, Cynthia Rodriguez, Kristin Barbour, Alberto Barron Sandoval, Joanna Wang, Joia Kai Capocchi, Pauline Uyen Phuong Nguyen, Khanh Thuy Huynh, and Clara Barnosky for their input on analyses and previous drafts and for laboratory help. This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research grants DE-SC0016410 and DE-SC0020382.Peer reviewedPublisher PD

    Phase Synchronization in Railway Timetables

    Full text link
    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern

    Harmonic generation in ring-shaped molecules

    Get PDF
    We study numerically the interaction between an intense circularly polarized laser field and an electron moving in a potential which has a discrete cylindrical symmetry with respect to the laser pulse propagation direction. This setup serves as a simple model, e.g., for benzene and other aromatic compounds. From general symmetry considerations, within a Floquet approach, selection rules for the harmonic generation [O. Alon Phys. Rev. Lett. 80 3743 (1998)] have been derived recently. Instead, the results we present in this paper have been obtained solving the time-dependent Schroedinger equation ab initio for realistic pulse shapes. We find a rich structure which is not always dominated by the laser harmonics.Comment: 15 pages including 7 figure
    • …
    corecore